

Stereochemical analysis by circular dichroism spectroscopies

Gennaro Pescitelli

Dipartimento di Chimica e Chimica Industriale Università di Pisa

gennaro.pescitelli@unipi.it :: https://people.unipi.it/gennaro_pescitelli/

Synopsis

- 1. Electronic Circular Dichroism (ECD) and related spectroscopies
 - a. Instrumentation & basics
 - b. Major factors determining ECD spectra
 - c. ECD applications on small molecules and biopolymers
 - i. Absolute configuration assignment
 - ii. Conformational analysis
- 2. ECD and supramolecular chirality
 - a. Chiral supramolecular systems
 - b. Assessment of supramolecular helicity
- 3. ECD of aggregated states of conjugated polymers
 - a. Aggregate formation and evolution
 - b. Intrachain vs interchain helicity
 - c. Multiple aggregation pathways
 - d. CD imaging
- 4. Vibrational Circular Dichroism (VCD)
 - a. Parallel with ECD
 - b. Main applications

Light polarization

Chiroptical vs. non-chiral spectroscopies

- UV-vis absorption spectroscopy: absorption of isotropic (non-polarized) light
- Electronic circular dichroism (ECD): differential absorption of left vs. right circularly polarized light in the UV-Vis-NIR range
- Both allied with (low-lying) electronic transitions

Chiroptical vs. non-chiral spectroscopies

Chiroptical vs. non-chiral spectroscopies

- Electronic circular dichroism (ECD or CD)
 - UV-vis absorption spectroscopy
- Optical rotatory dispersion (ORD)
 - Refractive index dispersion
- Vibrational circular dichroism (VCD)
 - IR spectroscopy
- Raman optical activity (ROA)
 - Raman spectroscopy
- Circularly polarized luminescence (CPL)
 - Fluorescence (emission spectrum)

Circular dichroism: phenomenology

Circular dichroism: instrumentation

Circular dichroism: measurement

Measurement conditions:

- Near UV-transparent solvent (water, CH₃OH, CH₃CN, dioxane, hexane)
- Sample absorbance < 1 (ideally ≈ 0.8)
- Commonly observed range 185-700 nm, up to 1300 nm
- State of the matter: mainly solutions, but also solid state (thin films, powders, microcrystals)
- Optional: variable-temperature module, stopped-flow etc.

Non-negligible ECD spectrum requires:

- Resonance: presence of one or more light-absorbing units (chromophores)
- Chirality: structure devoid of symmetry elements (planes, centers)

Chromophores and symmetry

Chromophore

- A light-absorbing unit composed by one or more atoms
- Conjugated π -system, or atom with high-lying n, d or f orbitals undergoing π - π^* , n- π^* , n- σ^* , d-d or f-f transitions

Chromophores and symmetry

• An **electric-dipole allowed** transition: alkene $\pi \rightarrow \pi^*$ (190 nm)

• A magnetic-dipole allowed transition: carbonyl n $\rightarrow \pi^*$ (290 nm)

Rotational strength and transition moments

Optical activity mechanisms

Exciton coupling and exciton chirality

- Two or more chromophores with electric-dipole allowed transitions
- Electronically isolated chromophores (no conjugation, resonance, charge-transfer)
- Skewed moments (not coplanar or collinear)

Quantifying CD spectra: the g-factor

Dissimmetry ratio or Kuhn's ratio or g-factor:

Chromophores and pertubers

- The perturbation by a chiral surrounding may act non-covalently, e.g.: an achiral dye embedded in a chiral host
- Exciton coupling may act intermolecularly,
 e.g.: a chiral supramolecular aggregate of (a)chiral dyes

Main applications of ECD spectroscopy

- Assignment of absolute configurations, especially of (small) organic molecules and organometallic compounds
- Conformational investigations (small molecules, polymers, biopolymers)
- Detecting the on/off state of chiroptical switches
- Analytical tool to detect and quantify molecular adducts and supramolecular species
- Helicity and other structural details of chiral supramolecular assemblies
- Chromatographic detector (direct e.e. measurement)

- CD spectra are sensitive to the **overall** stereochemistry
- The two enantiomers of a chiral species always have mirror image CD spectra image cD spectra

Dražić et al, Eur J Org Chem 2016, 4189

- CD spectra are sensitive to the **overall** stereochemistry
- The diastereomers of a chiral substance with multiple chirality elements have in general different CD spectra

- CD spectra are sensitive to the **overall** stereochemistry
- CD is very conformation-dependent, especially for excitoncoupled systems is conformational studies

Pescitelli et al, JACS 1999, 121, 7998

- CD spectra are sensitive to the **overall** stereochemistry
- Different conformers of the same compound have in general different CD spectra

Calculated CD

Padula et al, Molecules 2018, 23, 128

Quantum-mechanical ECD calculations

- Efficient sampling of the conformational space with molecular mechanics methods
- Accurate DFT functionals, large basis sets, solvent models
- Check against NMR data (δ, NOE, J-couplings)
- Use multiple DFT functionals, robust basis sets, solvent models

Pescitelli, Bruhn Chirality 2016, 28, 466

Helicenes and helicenoids

Chiroptical switches

- Chiral molecules adopting two interconvertible states with different chiroptical properties
- Interconversion modulated by various stimuli
 - Host-guest binding
 - Metal cation / anion coordination
 - Solvent exchange
 - Redox triggering
 - Temperature variation
 - pH variation
 - Irradiation (photoswitches)
- Different sizes and complexity
 - Molecular
 - Macromolecular
 - Supramolecular
- Applications: sensing, molecular motors, etc.

Chiroptical molecular switches

Chiroptical molecular switches

Proteins and CD

- CD of peptides and proteins is very sensitive to secondary structure
- Used as a tool for several purposes:
 - secondary structure fraction estimation
 - folding/unfolding
 - conformational changes

Elastase

Concanavalin

Proteins and CD

- α -Helix CD is dominated by exciton coupling between π - π^* transitions, plus a contribution from n- π^* transitions
- Side-chain chromophores contribute in the near-UV

Protein conformational changes by CD

Secondary structure estimation

- Observed CD = weighted sum of CDi of secondary structure elements
- Component CD spectra extracted from model systems (regular peptides) or from a dataset of proteins with known secondary structure
- Yields secondary structure fraction: regular + distorted helix (H), regular + distorted sheet (S), turn (T), unordered (U)

Macromolecular chirality: helical polymers

- Chiral polymers folding as helical structures
- Achiral polymers assuming preferential helicity by interaction with chiral dopants
- Main CD applications: detection of helix formation, helicity (handedness)

Supramolecular chirality

- Many supramolecular architectures inspired by Nature, or designed following a bio-mimetic approach
- Related to chiral symmetry-breaking (Nature homochirality)

CD and supramolecular chirality

Main applications:

- 1. As an analytical tool
 - Detection of chiral supramolecular objects
 - Quantification of chiral supramolecular objects
 - Binding isotherms, K_{eq} , ΔH^0 and ΔS^0
 - Stoichiometries and Hill coefficients
 - $T_{sol/gel}$ or T_{melt} and other transition parameters
 - Detection of chirality amplification phenomena
- 2. Qualititative structure/property relationships
 - Assignment of supramolecular helicity
 - Geometry of host/guest complexes
 - Geometry of (bio)macromolecule/dye adducts
- 3. Quantitative structural information

Detection of supramolecular species

- HG complexes with small association constants ($K_a \sim 10^4$) have short lifetimes $\tau = k_{off}^{-1} \le 100 \ \mu s$
- "Slow" spectroscopies (NMR) give a single average signal for H (or G) and HG
- Fast spectroscopies (UV, CD, Flu) give independent signals for H and H

Induced Circular Dichroism (ICD)

- Achiral chromophoric ligand: Abs bands > 240 nm but no ECD
- Proteins: no Abs bands > 240 nm
- Protein/ligand complex: ECD-active Abs bands > 240 nm ⇒ induced CD (ICD)

Induced Circular Dichroism (ICD) mechanisms

1. Chiral perturbation from the surrounding

2. Chiral conformation assumed upon binding

3. Exciton coupling between host and ligand chromophores

4. Exciton coupling between multiple ligands

H- and J-aggregates: absorption spectra

- Typical response to aggregation due to π-stacking
- In- and out-of-phase combinations of transition dipole moments

Exciton CD and supramolecular helicity

- For many supramolecular arrangements of chromophoric units, the relation between helicity (handedness) and CD is straightforward
- Example: spiral staircase stack

Helicity at different scales

- Chirality may be encountered at different levels of hierarchy, i.e., at different size scales
- No straightforward of univocal relationship between the chirality or helicity at different levels of hierarchy

Conjugated polymers

- Key components of organic electronics
- Applications in optoelectronic devices such as
 - Organic light-emitting diodes (OLEDs)
 - Organic photovoltaic (OPV) cells
 - Organic field-effect transistors (OFETs)

Conjugated polymers

Chiral conjugated polymers

Control over supramolecular structures, in particular helical ones

• Favorable impact of chirality on material properties

Chiral conjugated polymers

Bouman et al., Mol. Cryst. Liq. Cryst. A 1994, 256, 439; Adv. Mater. 1995, 7, 385

Chiral polythiophenes

Intrachain vs. interchain chirality

Intrachain vs. interchain chirality

Padula et al., RSC Adv. 2016, 6, 37938; Aranda et al., PCCP 2018, 20, 21864

CD imaging (CD_i)

- Spatially-resolved CD measurements with resolution ~0.1 mm
- Combines CD and optical microscopy

CD imaging (CD_i)

Vibrational vs Electronic Optical Activity

Vibrational vs Electronic Optical Activity

	Vibrational CD	Electronic CD
Range	800-4000 cm ⁻¹ (esp. 800-1500 cm ⁻¹)	190-800 nm
Measurement mode	Fourier transform	Continuous
Sample requirements	None	Must have chromophores
Sample concentration	≈0.1 M	< mM
Solvent	CCI_4 , $CDCI_3$, CD_3OD , D_2O	H ₂ O, alcohols, ethers, alkanes, CH ₃ CN, CHCl ₃ , DMSO, etc (and mixtures)
Cell path length	10-100 μm	0.01-1 cm
Cell material	KBr (hygroscopic) BaF ₂ , CaF ₂	Optical quartz
Typical g-factor	10 ⁻⁴ -10 ⁻⁵	10 ⁻² -10 ⁻⁴
Typical accumulations	2000-8000	1-8
Typical measurement time	30-60 min	5-10 min

Vibrational vs Electronic Optical Activity

Main applications of VCD spectroscopy

- Assignment of absolute configuration, virtually of any molecule, also in combination with ECD
- Conformational investigations (molecules, biopolymers)
- Enantiomeric excess measurement
- Detection of aggregated species, especially when leading to enhanced VCD signals
 - Gels
 - Fibrils

VCD calculations

VCD calculations

Acknowledgements

Lorenzo Di Bari Francesco Zinna

Giuliano Siligardi, Rohanah Hussain, Tamás Jávorfi @ Diamond Light Source, UK

Gianlugi Albano @ Uni Bari Daniele Padula @ Uni Siena Claudio Resta @ Uni Firenze Marcin Górecki

@ Polish Acad. of Sciences

Gianluca Farinola @ Uni Bari Jérôme Lacour @ Uni Genève Marin Roje, Tonko Dražić @ RBI (Zagreb) Fabrizio Santoro @ CNR Pisa Torsten Bruhn @ Uni Würzburg

References

- Chem. Soc. Rev. 2007, 36, 914-931
- Chem. Soc. Rev. 2011, 40, 4603-4625
- Chem. Soc. Rev. 2014, 43, 5211-5233
- Chirality 2016, 28, 466-474

[basics and main applications] [conformational aspects] [supramolecular systems] [calculations]